Screening, identification and application of protease-producing strains in Antarctic krill meal

LI Xueping, LIU Zhidong, NING Xibin

PDF(1591 KB)

Transactions of Oceanology and Limnology ›› 2025, Vol. 47 ›› Issue (1) : 173-180. DOI: 10.13984/j.cnki.cn37-1141.2025.01.021
Research Report

Screening, identification and application of protease-producing strains in Antarctic krill meal

  • LI Xueping1, LIU Zhidong2, NING Xibin1,3,4
Author information +
History +

Abstract

In order to improve the utilization rate of shrimp meal feed, in this study, we attempted to screen an acid-producing protease strain L-22 from the shrimp meal hydrolysate in combination with modern fermentation technology. Physiological, biochemical, and 16S rDNA identification of the strain was carried out. The sequences were compared with BLAST and use to construct a phylogenetic tree. The nucleic acid sequence was deposited into GenBank with an accession number through Bankit. The conditions that affected the fermentation of the strain were explored under liquid fermentation conditions. The results showed that the bacterium was a safe strain that can tolerate high temperature and high salt environments, and hydrolyze gelatin, starch, tyrosine among others. It was determined to be Bacillus subtilis. The molecular weight of its proteins as were shown in SDS-PAGE electrophoresis varied between 29.0 KDa and 44.3 KDa. Under liquid fermentation conditions, the free amino acid content and enzyme activity were used as indicators. The amino acid content in the fermentation broth changed from initial 4.29±0.259 mg/mL to 6.65±0.20 mg/mL, and the enzyme activity increased from 25.17±0.840 U/mL to 39.90±0.95 U/mL after a partial optimization of the conditions. The strain obtained has a good effect on improving the utilization rate of shrimp meal.

Key words

acid protease / separation / fermentation / Antarctic krill shrimp powder / amino acid

Cite this article

Download Citations
LI Xueping, LIU Zhidong, NING Xibin. Screening, identification and application of protease-producing strains in Antarctic krill meal. Transactions of Oceanology and Limnology. 2025, 47(1): 173-180 https://doi.org/10.13984/j.cnki.cn37-1141.2025.01.021

References

[1] WANG L Z, XU C H, WANG Y M, et al. Extraction of proteins with low fluoride level from Antarctic Krill (Euphausia superba) and their composition analysis[J].Journal of Agricutural and Food Chemistry, 2011, 59(11): 6108-6112.
[2] 刘志东, 陈雪忠, 黄洪亮, 等. 南极磷虾粉的营养成分分析及评价[J].中国海洋药物, 2012, 31(2): 43-48.
[3] FLORETO, EAT, BROWN, et al. The effects of krill hydrolysate-supplemented soya-bean based diets on the growth colouration, amino and fatty acid profiles of juvenile American lobster, Homarus americanus[J].Aquaculture Nutrition, 2001, 7(1): 33-43.
[4] PAUNGFOO L C, LONHIENNE T, RENTSCH D, et al. Plants can use protein as a nitrogen source without assistance from other organisms[J].Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(11): 4524-4529.
[5] LADEIRA N, DONNICI C L, MESQUITA J, et al. Preparation and characterization of hydrogels obtained from chitosan and carboxymethyl chitosan[J].Journal of Polymer Research, 2021, 28(9): 1-12.
[6] ZHOU C, HU J, MA H, et al. Antioxidant peptides from corn gluten meal: Orthogonal design evaluation[J].Food Chemistry, 2015, 187(15): 270-278.
[7] 刘鑫, 李佳, 刘克武, 等. 黑曲霉酸性蛋白酶在食醋酿造中的催化效应[J].化学研究与应用, 2004(4): 482-484.
[8] 张学峰, 刘达玉, 夏兵兵, 等.酒用酸性蛋白酶在甜酒酿生产中的应用[J].中国酿造, 2009(2): 122-124.
[9] 俞从正, 董新宽, 王全杰, 等. 酸性蛋白酶537处理绵羊蓝湿革对皮革延伸性能影响的研究[J].中国皮革, 2006(9): 16-20+25.
[10] 张秀江, 胡虹, 范国歌, 等. 酸性蛋白酶高产菌株选育及酶学性质的研究[J].河南科学, 2012, 30(3): 327-332.
[11] 慕跃林, 黄遵锡. 酸性蛋白酶高产菌株的选育[J].云南师范大学学报:自然科学版, 1999, 19(3): 43-48.
[12] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. 饲料添加剂酸性、中性蛋白酶活力的测定分光光度法:GB/T 28715-2012[S].北京:中国标准出版社,2012.
[13] 汤海鸥. 酶解提取松针粉挥发油和葛根黄酮的研究[D].安徽:安徽农业大学, 2006.
[14] 杨城, 姚善泾, 杨志坚, 等. 一株产酸性蛋白酶菌株的筛选、鉴定及发酵条件优化[J].农业生物技术学报, 2019, 27(2): 371-380.
[15] VOS P D, GARRITY G M, JONES D, et al. Bergey's Manual of Systematic Bacteriology[J].Bergeys Manual of Systematic Bacteriology, 2009, 38(4):443-491.
[16] 陈成, 宁喜斌. 产β-内酰胺酶菌株的筛选、鉴定及酶学性质初步研究[J].食品与发酵工业, 2019, 45(24): 77-83.
[17] 权淑静, 马焕, 王一雯, 等. 青藏高原土壤低温产蛋白酶菌株的筛选及酶学性质研究[J].中国酿造, 2018, 37(5): 66-70.
[18] 刘长姣, 杨越越, 王妮, 等.茚三酮比色法测定秋葵中氨基酸含量条件的优化[J].中国食品添加剂, 2018(1): 187-193.
[19] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.茶游离氨基酸总量的测定:GB/T 8314-2013[S].北京:中国标准出版社,2014.
[20] ZHAO Z, RASOOL M A, CHEN C, et al. Identification and screening of multiple tropical microalgal strains for antioxidant activity in vitro[J].Food Bioscience, 2020, 36: 100649.
[21] 杜汉宇, 葛成菲, 汪丽丽, 等. 枯草芽孢杆菌的分离鉴定及其特性研究[J].天津农学院学报, 2020, 27(3): 53-56.
[22] 黄子凌, 莫港澳, 李文, 等. 高产中性蛋白酶菌株的诱变选育及益生特性[J].食品与发酵工业, 2021, 47(17): 84-90.
[23] 刘文龙, 刘胜利, 王兴吉, 等. 枯草芽孢杆菌产中性蛋白酶发酵条件的优化[J].化学与生物工程, 2019, 36(1): 47-52.
[24] 蒋宝莹, 裘娟萍, 孙东昌. 芽胞杆菌基因敲除技术及其在工农业应用中的研究进展[J].食品与发酵工业, 2016, 42(5): 264-271.
[25] 卢超, 陈景鲜, 王国霞, 等. 枯草芽孢杆菌L07产中性蛋白酶发酵条件优化[J].食品与发酵工业, 2020, 46(16): 148-153.
[26] 孙倩. 三种不同来源(植物、细菌和真菌)蛋白酶的纯化、性质及应用研究[D].北京: 中国农业大学, 2016.
[27] 王松, 江成英, 郑喜群, 等. 发酵玉米蛋白粉饲料的枯草芽孢杆菌紫外诱变选育[J].中国饲料, 2019(3): 23-25+29.
PDF(1591 KB)

13

Accesses

0

Citation

Detail

Sections
Recommended

/