大型海藻在蓝碳中的作用及研究进展

白泽文, 刘正一, 赵燕, 张金浩, 秦松, 钟志海

PDF(2220 KB)

海洋湖沼通报 ›› 2025, Vol. 47 ›› Issue (2) : 193-201. DOI: 10.13984/j.cnki.cn37-1141.2025.02.024
研究综述

大型海藻在蓝碳中的作用及研究进展

  • 白泽文1,2,3, 刘正一2,3, 赵燕1, 张金浩4, 秦松2,3, 钟志海2,3*
作者信息 +

Roles and research progresses of macroalgae in blue carbon

  • BAI Zewen1,2,3, LIU Zhengyi2,3, ZHAO Yan1, ZHANG Jinhao4, QIN Song2,3, ZHONG Zhihai2,3
Author information +
History +

摘要

通过海洋活动及海洋生物捕获碳的活动称为蓝碳。大型海藻可通过光合作用吸收水体中的无机碳,并将其转化为有机碳,实现CO2的固定。在生长过程中,藻体也会持续不断向水体中释放溶解性有机碳(DOC)和颗粒性有机碳(POC),对近海碳循环有着重要意义。大型海藻在蓝碳中的作用可通过碳核算来评估,即估算大型海藻的固碳量与储碳量,固碳量即为藻体本身碳含量与生长过程中释放的DOC、POC量的总和,储碳量为埋藏的碳量和惰性有机碳的和。本文从海洋碳酸盐系统、大型海藻光合作用及有机碳去向、碳核算、大型海藻蓝碳面临的挑战等四方面进行综述,以期为后续研究提供参考。

Abstract

The activity of capturing carbon through marine activities and marine organisms is called blue carbon. Macroalgae can convert inorganic carbon into organic carbon in seawater through photosynthesis and realize CO2 fixation. During the growth process, macroalgae continuously release dissolved organic carbon (DOC) and particulate organic carbon (POC) into seawater. The contribution amount of macroalgae in blue carbon can be evaluated through carbon accounting, that is, estimating the carbon sequestration and storage of macroalgae. The carbon sequestration is the sum of the carbon content of macroalgae, DOC and POC. The carbon storage is the sum of the buried carbon and inert organic carbon. In order to provide supports for future research, in this paper, we reviewed the marine carbonate system, photosynthesis and fate of organic carbon, carbon accounting, and the challenges faced by macroalgae blue carbon.

关键词

蓝碳 / 大型海藻 / 光合作用 / 碳核算

Key words

blue carbon / macroalga / photosynthesis / carbon accounting

引用本文

导出引用
白泽文, 刘正一, 赵燕, 张金浩, 秦松, 钟志海. 大型海藻在蓝碳中的作用及研究进展. 海洋湖沼通报. 2025, 47(2): 193-201 https://doi.org/10.13984/j.cnki.cn37-1141.2025.02.024
BAI Zewen, LIU Zhengyi, ZHAO Yan, ZHANG Jinhao, QIN Song, ZHONG Zhihai. Roles and research progresses of macroalgae in blue carbon. Transactions of Oceanology and Limnology. 2025, 47(2): 193-201 https://doi.org/10.13984/j.cnki.cn37-1141.2025.02.024

参考文献

[1] NELLEMANN C, CORCORAN E, DUARTE C M, et al. Blue carbon-a rapid response assessment[M].Oslo:Birkeland Trykkeri AS, 2009.
[2] JIAO N Z, HONG W, XU G H, et al. Blue carbon on the rise: challenges and opportunities[J].国家科学评论:英文版,2018,5(4):464-468.
[3] GRUBER N, DONEY S C. Modeling of ocean biogeochemistry and ecology [J]. Encyclopedia of Ocean Sciences (Third Edition), 2019, 5: 547-560.
[4] 焦念志. 蓝碳行动在中国[M]. 北京: 科学出版社, 2018.
[5] KNOLL A H. Biomineralization and evolutionary history[J]. Reviews in Mineralogy & Geochemistry, 2003, 54(1): 329-356.
[6] MALLAPATY S. How China could be carbon neutral by mid-century[J]. Nature, 2020,586(7830): 482-483.
[7] ROMANELLO M, MCGUSHIN A, DI NAPOLI C, et al. The 2021 report of the Lancet Countdown on health and climate change: code red for a healthy future[J]. Lancet, 2021, 398(10311):1619-1662.
[8] ZHANG S H, AN K X, LI J, et al. Incorporating health co-benefits into technology pathways to achieve China's 2060 carbon neutrality goal: a modelling study[J]. The Lancet Planetary Health, 2021, 5: e808-e817.
[9] 张晓龙, 李培英, 李萍, 等. 中国滨海湿地研究现状与展望[J]. 海洋科学进展, 2005, 23(1): 87-95.
[10] Food and Agriculture Organization of the United Nations. Status and trends in mangrove area extent worldwide: Forest resources assessment working paper No.63. [R].Forest Resources Division. FAO, Rome, 2003. (Unpublished)
[11] DUARTE C M, LOSADA I J, HENDRIKS I E, et al. The role of coastal plant communities for climate change mitigation and adaptation[J]. Nature Climate Change, 2013, 3(11): 961-968.
[12] ALPERT S B, SPENCER D F, HIDY G. Biospheric options for mitigating atmospheric carbon dioxide levels[J]. Energy Conversion and Management, 1992, 33(5): 729-736.
[13] XIAO X, AGUSTÍ S, YU Y, et al. Seaweed farms provide refugia from ocean acidification[J]. Science of The Total Environment, 2021, 776: 145192.
[14] BUSCHMANN A H, CAMUS C, INFANTE J, et al. Seaweed production: overview of the global state of exploitation, farming and emerging research activity[J]. European Journal of Phycology, 2017, 52(4): 391-406.
[15] 杨宇峰, 罗洪添, 王庆, 等. 大型海藻规模栽培是增加海洋碳汇和解决近海环境问题的有效途径[J]. 中国科学院院刊, 2021, 36(3): 1-11.
[16] LUBCHENCO J, HAUGAN P M, PANGESTU M E. Five priorities for a sustainable ocean economy[J]. Nature, 2020, 588: 30-32.
[17] DUARTE C M, BRUHN A, KRAUSE-JENSEN D. A seaweed aquaculture imperative to meet global sustainability targets[J]. Nature Sustainability,2022,5:185-193.
[18] 杨东江, 赵小亮, 吕春晓, 等. 一种金属有机框架材料/海藻纤维布 (MOFs/AFC) 复合膜的制备方法: CN108970419A[P].2018-12-11.
[19] ROBLEDO D, FRAGA J, GASCA-LEYVA. Social and economic dimension of carrageenan seaweed farming in Mexico: Fisheries and aquaculture technical paper No.580 [R]. Rome: FAO, 2013.
[20] REBOURS C, MARINHO-SORIANO E, ZERTUCHE-GONZáLEZ J A, et al. Seaweeds: An opportunity for wealth and sustainable livelihood for coastal communities[J]. Journal of Applied Phycology, 2014, 26(5): 1939-1951.
[21] KRAUSE-JENSEN D, LAYBERY P S, SERRANO O, et al. Sequestration of macroalgal carbon: the elephant in the blue carbon room[J]. Biology Letters, 2018, 14(6): 20180236.
[22] 严国安, 刘永定. 水生生态系统的碳循环及对大气CO2的汇[J]. 生态学报, 2001(5): 827-833.
[23] WANNINKHOF R, PARK G H, TAKAHASHI T, et al. Global ocean carbon uptake: magnitude, variability and trends[J]. Biogeosciences, 2013, 10(3): 1983-2000.
[24] PLATTNER G K, JOOS F, STOCKER T F, et al. Feedback mechanisms and sensitivities of ocean carbon uptake under global warming[J]. Tellus B, 2001, 53: 564-592.
[25] 王双晶. 二氧化碳增加和气候变化对海洋碳储量、酸化及氧储量的影响[D].杭州:浙江大学, 2015.
[26] HELM K P, BINDOFF N L, CHURCH J A. Observed decreases in oxygen content of the global ocean[J]. Geophysical Research Letters, 2011, 38(23): L23602.
[27] SWINGEDOUW D. Effect of land-ice melting and associated changes in the AMOC result in little overall impact on oceanic CO2 uptake[J]. Geophysical Research Letters, 2007, 34(23): L23706.
[28] TOGGWEILER J R, RUSSELL J. Ocean circulation in a warming climate[J]. Nature, 2008, 451(7176): 286-288.
[29] 张含. 大气二氧化碳、全球变暖、海洋酸化与海洋碳循环相互作用的模拟研究[D]. 杭州:浙江大学, 2018.
[30] 孙军, 李晓倩, 陈建芳, 等. 海洋生物泵研究进展[J]. 海洋学报, 2016, 38(4): 1-21.
[31] 焦念志. 海洋固碳与储碳——并论微型生物在其中的重要作用[J]. 中国科学: 地球科学, 2012, 42(10): 1473-1486.
[32] HARROLD C, LIGHT K, LISIN S. Organic enrichment of submarine-canyon and continental shelf benthic communities by macroalgal drift imported form nearshore kelp forests[J]. Limnology and Oceanography, 1998, 43: 669-678.
[33] JIAO N, HERNDL G J, HANSELL D A, et al. Microbial production of recalcitrant dissolved organic matter: Long-term carbon storage in the global ocean[J]. Nature Reviews Microbiology, 2010, 8: 593-599.
[34] HINRICHS K U, HAYES J M, SYLVA S P, et al. Methane-consuming archaebacteria in marine sediments[J]. Nature, 1999, 398: 802-805.
[35] 王有基, 李丽莎, 李琼珍, 等. 海洋酸化和全球变暖对贝类生理生态的影响研究进展[J]. 生态学报, 34(13): 3499-3508.
[36] FABRY V J, SEIBEL B A, FEELY R A, et al. Impacts of ocean acidification on marine fauna and ecosystem processes[J]. Trends in Ecology & Evolution, 2013, 28(3): 178-86.
[37] ARMSTRONG R A, LEE C, HEDGES J I, et al. A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals[J]. Deep-Sea Research Part II, 2002, 49(1-3): 219-236.
[38] IVERSEN M H, PLOUG H. Ballast minerals and the sinking carbon flux in the ocean: carbon-specific respiration rates and sinking velocity of marine snow aggregates[J]. Biogeosciences, 2010, 7(9): 2613-2624.
[39] 焦念志. 微生物碳泵理论揭开深海碳库跨世纪之谜的面纱[J]. 世界科学, 2019(10): 2.
[40] 何培民, 刘媛媛, 张建伟, 等. 大型海藻碳汇效应研究进展[J]. 中国水产科学, 2015(3): 588-595.
[41] BEER S, REHNNBERG J. The acquisition of inorganic carbon by the seagrass Lostera marima[J]. Aquatic Botany, 1997, 56: 277-283.
[42] BEER S, BJÖRK M, BEARDALL J, et al. Photosynthesis in the marine environment[M]. UK: John Wiley & Sons, 2014.
[43] 芦笛. 大型海藻光合碳代谢类型的研究进展[J]. 自然杂志, 2013, 35(4): 264-273.
[44] 高坤山. 藻类光合固碳的研究技术与解析方法[J]. 海洋科学, 1999(6): 5.
[45] HEBER U, BLIGNY R, STREB P, et al. Photorespiration is essential for the protection of the photosynthetic apparatus of C3 plants against photoinactivation under sunlight[J]. Botanica Acta, 1996, 109(4): 307-315.
[46] SULTEMEYER D, SCHMIDT C, FOCK H P. Carbonic abhydrases in higher plants and aquatic microorganisms[J]. Plant Physiology, 1993, 88: 179-190.
[47] TANG Q, ZHANG J, FANG J. Shellfish and seaweed mariculture increase atmospheric CO2 absorption by coastal ecosystem[J]. Marine Ecology Progress Series, 2011, 424: 97-104.
[48] ABDULLAH M I, FREDRIKSEN S, CHRISTIE H. The impact of the kelp (Laminaria hyperborea) forest on the organic matter content in sediment of the west coast of Norway[J]. Marine Biology Research, 2017, 13(2): 1-10.
[49] HYNDES G A, NAGELKERKEN I, MCLEOD R J, et al. Mechanisms and ecological role of carbon transfer within coastal seascapes[J]. Biological Reviews, 2014, 89: 232-254.
[50] 郭文杰. 獐子岛人工鱼礁区藻场碳汇基础研究[D]. 大连:大连海洋大学, 2016.
[51] TREVATHAN-TACKETT S M, KELLEWAY J, MACREADIE P I, et al. Comparison of marine macrophytes for their contributions to blue carbon sequestration[J]. Ecology, 2015, 96(11), 3043-3057.
[52] PAINE E R, SCHMID M, BOYD P W, et al. Rate and fate of dissolved organic carbon release by seaweeds: a missing link in the coastal ocean carbon cycle[J]. Journal of Phycology, 2021, 57(5): 1375-1391.
[53] HANSELL D A. Recalcitrant dissolved organic carbon fractions[J]. Annual Review of Marine Science, 2013, 5(1): 421-445.
[54] CARLSON C A, DUCKLOW H W, MICHAELS A F. Annual flux of dissolved organic carbon from the euphotic zone in the northwestern Sargasso Sea[J]. Nature, 1994, 371(6496): 405-408.
[55] ZHANG Y, ZHANG J, LIANG Y, et al. Carbon sequestration processes and mechanisms in coastal mariculture environments in China[J]. Science China (Earth Sciences), 2017, 60(12): 1-11.
[56] FREDERICK K L, EDWARD J T. 地球科学导论: 第7版[M]. 徐学纯,译. 1版. 北京: 电子工业出版社, 2017.
[57] 陶平, 邵秘华, 鲍永恩, 等. 海洋地球化学[M]. 北京: 科学出版社, 2018.
[58] DUARTE C M, CEBRIAN D J. The fate of marine autotrophic production[J]. Limnology & Oceanography, 1996, 41(8): 1758-1766.
[59] RAVEN J A. The possible roles of algae in restricting the increase in atmospheric CO2 and global temperature[J], European Journal of Phycology, 2017, 52: 4, 506-522.
[60] HILL R, BELLGROVE A, MACREADIE P I, et al. Can macroalgae contribute to blue carbon? An Australian perspective[J]. Limnology and Oceanography, 2015, 60(5): 1689-1706.
[61] MAHMOOD T, FANG J, JIANG Z, et al. Seasonal distribution, sources and sink of dissolved organic carbon in integrated aquaculture system in coastal waters[J]. Aquaculture International, 2017, 25: 71-85.
[62] VÖRÖS L, V-BALOGH K, KONCZ E, et al. Phytoplankton and bacterioplankton production in a reed-covered water body[J]. Aquatic Botany, 2003, 77: 99-110.
[63] SUN Y G, MAO S Y, WANG F Y, et al. Identification of the Kukersite-type source rocks in the Ordovician Stratigraphy from the Tarim Basin, NW China[J]. 科学通报(英文版), 2013, 58: 4450-4458.
[64] STAGNOL D, MACE M, DESTOMBE C, et al. Allometric relationships for intertidal macroalgae species of commercial interest[J]. Journal of Applied Phycology, 2016, 28(6): 3407-3411.
[65] GAO K S, MCKINLEY K R. Use of macroalgae for marine biomass production and CO2 remediation: a review[J]. Journal of Applied Phycology, 1994, 6(1): 45-60.
[66] ORTEGA A, GERALDI N R, ALAM I, et al. Important contribution of macroalgae to oceanic carbon sequestration[J]. Nature Geoscience, 2019, 12(9): 748-754.
[67] 严立文, 黄海军, 陈纪涛, 等. 我国近海藻类养殖的碳汇强度估算[J]. 海洋科学进展, 2011, 29(4): 537-545.
[68] MILLER R J, MANN K H. Ecological energetics of the seaweed zone in a marine bay on the Atlantic coast of Canada. III. Energy transformations by sea urchins[J]. Marine Biology, 1973, 18: 99-114.
[69] ROBERTS D A, PAUL N A, DWORJANYN S A, et al. Biochar from commercially cultivated seaweed for soil amelioration[J]. Scientific Reports, 2015, 9(5): 9665.
[70] ZEMKE-WHITE W L, OHNO M. World seaweed utilisation: An end-of-century summary[J]. Journal of Applied Phycology, 1999, 11, 369-376.
[71] ARENAS F, VAS-PINTO F. Marine algae as carbon sinks and allies to combat global warming[M]. In: Pereira L, Neto JM (eds) Marine algae: biodiversity, taxonomy, environmental assessment and biotechnology. Boca Raton: CRC Press, 2014, 178-193.
[72] SONDAK C, ANG P O, BEARDALL J, et al. Carbon dioxide mitigation potential of seaweed aquaculture beds (SABs) [J]. Journal of Applied Phycology, 2017, 29(5): 2363-2373.
[73] STAGNOL D, MACE M, DESTOMBE C, et al. Allometric relationships for intertidal macroalgae species of commercial interest[J]. Journal of Applied Phycology, 2016, 28(6): 3407-3411.
[74] 邵魁双, 巩宁, 王立军, 等. 大连温带海域潮间带底栖海藻固碳和储碳潜力模拟研究[J]. 海洋学报(中文版), 2019, 41(12): 113-120.
[75] 邹敏, 章守宇, 周曦杰. 温度和光照强度对海藻场瓦氏马尾藻碎屑分解的影响[J]. 生态学杂志, 2017, 36(2): 428-435.
[76] WANG F, HARINDINTWALI J D, YUAN Z, et al. Technologies and perspectives for achieving carbon neutrality[J]. Innovation, 2021, 2(4): 1-22.
[77] 商荣宁. 2010年黄、渤海有机碳的分布特征及影响因素[D]. 青岛: 中国海洋大学, 2011.
[78] 刘耀谦, 张才学, 孙省利,等. 硇洲岛岩礁带大型海藻固碳潜能[J]. 广东海洋大学学报, 2019, 39(5): 78-84.
[79] 张继红, 方建光, 唐启升. 中国浅海贝藻养殖对海洋碳循环的贡献[J]. 地球科学进展, 2005, 20(3): 359-365.
[80] National Academies of Sciences, Engineering, and Medicine. A research strategy for ocean-based carbon dioxide removal and sequestration[M]. Washington, DC: The National Academies Press, 2021.
[81] TITLYANOV E A, TITLYANOVA T V. Seaweed cultivation: Methods and problems[J]. Russian Journal of Marine Biology, 2010, 36(4): 227-242.
[82] CHARRIER B, ABREU M H, ARAUJO R, et al. Furthering knowledge of seaweed growth and development to facilitate sustainable aquaculture[J]. New Phytologist. 2017, 216(4): 967-975.
[83] 赵云, 乔岳, 张立伟. 海洋碳汇发展机制与交易模式探索[J]. 中国科学院院刊, 2021, 36(3): 288-295.
[84] HEERY E C, LIAN K Y, LOKE L, et al. Evaluating seaweed farming as an eco-engineering strategy for 'blue' shoreline infrastructure[J]. Ecological Engineering, 2020, 152(3): 105857.
[85] LABRUGERE A, VERHAGEN H. Analysis of the carbon footprint of coastal protection systems[C]∥33rd Conference on Coastal Engineering, 2012.

基金

国家自然科学青年基金(42006110);烟台市科技计划(2020MSGY058);山东省自然科学青年基金(ZR2019QD017)
PDF(2220 KB)

33

Accesses

0

Citation

Detail

段落导航
相关文章

/